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Abstract

A finite element model to simulate an asymmetrical vehicle/track dynamic system is proposed in this
paper. This model consists of a 10-degree-of-freedom (d.o.f.) vehicle model, a track model with two rails,
and an adaptive wheel/rail contact model. The surface defects of wheels and rails can be simulated with
their geometry and an endless track model is adopted in the model. All time histories of forces,
displacements, velocities and accelerations of all components of the vehicle and track can be obtained
simultaneously. By using this model, one can study the effect that wheel/rail interaction from one side of the
model has on the other. This can be done for many asymmetrical cases that are common in railway practice
such as a wheel flat, wheel shelling, out-of-round wheel, fatigued rail, corrugated rail, head-crushed rail, rail
joints, wheel/rail roughness, etc. Only two solutions are reported in this paper: steady state interaction and
a wheel flat.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Studies on railway dynamics have been performed for almost a century. Knothe and Grassie [1]
have reviewed the historical background of modelling of railway vehicle/track interaction.
Timoshenko [2] started to study vehicle/track dynamics to examine the effect of wheel flats in
1926. In the last century hundreds of papers and reports about the vehicle/track dynamics have
been published.

The techniques to study vehicle/track interaction can be divided into two parts: frequency-
domain modelling and time-domain modelling. The frequency-domain technique is a simplified
solution to wheel/rail interaction. It establishes a relationship between receptance and external
force at different frequencies using a mathematical transformation under set assumptions, thereby
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avoiding the solution of complicated differential equations. Timoshenko [2] was the first person to
use the frequency-domain technique to analyze track dynamics and he proposed the concept of
receptance for a continuously supported Euler beam. The receptance of an Euler beam on a
separate layer of rigid sleepers was first calculated by Sato [3]. Grassie et al. [4] have systematically
introduced the technique and studied the dynamic response of railway track using a frequency-
domain modelling technique. Thompson [5] also used the technique to implement a model of
noise generation from a wheel/rail dynamic system.

Time-domain modelling is a technique used to solve the wheel/rail interaction in the time
domain. Displacements, velocities, accelerations and forces on all components in the vehicle/track
system can be solved in the time domain by coupling the track model, vehicle model and wheel/
rail contact model. The vibration frequencies of the different components can be calculated using
the displacement-time relationship. There are several notable researchers who have made
contributions to time-domain modelling for the vehicle/track dynamic system, and who are
developing vehicle/track time-domain models. The models developed before 1980 were
simple due to the limitations of computer technology at that time. Cai and Raymond [6]
have presented a wheel/rail and track dynamic model, considering a 4-d.o.f. vehicle model
and 40-sleeper long discretely supported track model. Nielsen and Igeland [7,8] have developed
a vehicle/track dynamic model, in which a finite element model of track containing 30 sleepers
with fixed boundaries at both ends was used. Dong [9,10] successfully developed a finite element
time-domain model for vehicle/track interaction. This model can provide responses for all
components of vehicle and track as the vehicle moves along the track. Defects can be simulated on
the wheels and the rails in the vehicle/track system. Zhai and Sun [11] have developed a model to
simulate the vehicle/track dynamic system with a 10-d.o.f. vehicle model and a 3-layer track
model.

However, all the vehicle/track models mentioned above are based on the assumption of vehicle/
track symmetry in order to simplify the calculation. Generally, this simplification is reasonable for
many cases, such as steady state situations; wheel flats, which always appear at the same position
of both wheels on a wheelset; burned rail, which always forms at the same position on both rails;
etc. However, in many cases defects of wheels and rails are not symmetric. For example, railhead
crush always forms on one rail. This defect forms due to inclusions inside the rail, and it is very
rare for inclusions to appear inside both rails at the same position. Corrugation is another
asymmetrical example. Some corrugations take place only on one side of the track, other
corrugations have a phase difference between the two rails even though they form on both rails.
There are many other asymmetrical cases, such as geometric misalignment, rail joints, wheel
shelling, fatigue damage on top of the rail, and so on. For the asymmetrical cases, unfortunately,
the symmetric vehicle/track model is not accurate. Therefore, an asymmetrical vehicle/track
model should be developed to solve asymmetrical problems.

An asymmetrical vehicle/track dynamic model, which is a finite element time-domain model, is
presented in this paper. The model combines three models together: a 10-d.o.f. vehicle model, a
two-layer track model with two rails and an adaptive wheel/rail contact model. The combined
model can simulate a vehicle moving on track continuously for as long as needed. All time
histories of forces, displacements, velocities and accelerations of the related components of the
vehicle and the track can be solved simultaneously. The responses of all components of the vehicle
and the track to any wheel/rail defects can be obtained with this program.
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By using this computer model, two cases have been studied: the steady state situation and one
leading wheel with a flat. The vehicle/track interactions on both sides of the track will be
exhibited.

2. Model of vehicle/track dynamics

The vehicle/track dynamic model consists of three models: the 10-d.o.f. vehicle model, the track
model with two rails and the adaptive wheel/rail contact model. A wheel flat geometry will also be
introduced in this section.

2.1. Vehicle model

A two level suspension vehicle model is employed. The wheelset and the bogie are connected by
the primary suspension while the car body is supported on the bogie through the secondary
suspension. A more realistic vehicle model incorporating two wheelsets, two bogie sideframes, and
half a car body is represented as a 10-d.o.f. model as shown in Fig 1. In this model, each wheelset
has vertical and rotational d.o.f. at its centre (uW1; uW2; yW1 and yW2). The bogies have vertical
(uB1 and uB2) and pitch (yB1 and yB2) d.o.f. while the car body has vertical (uC) and rotational (yC)
d.o.f.
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The motion equation for the 10-d.o.f. model can be expressed as

½M�f.ugþ½C�f’ugþ½K�fug¼fFg; ð1Þ

where ½M�; ½C� and ½K� are matrices of mass, damping and stiffness, and the vectors of
displacement fug and force fFg are given by

fug ¼ f uW1 yW1 uW2 yW2 uB1 yB1 uB2 yB2 uC yC gT;

fFg ¼ fFW1 MW1 FW2 MW2 FB1 MB1 FB2 MB2 FC MC gT:

2.2. Track model

The track studied in this paper is a two-layer model consisting of sleepers, rail pads, ballast,
subgrade and two rails, as shown in Fig. 2. The finite element method was used to analyze the
track system. The differential equation of the track model has the same form as Eq. (1). However,
the contents of the vectors and matrices of the track model are different from the vehicle model.
The force and displacement vectors include all components of forces and displacements at all
nodes on the track.

The track is divided into a number of units in the model. Each unit comprises one sleeper, seven
ballast spring–dampers and two pieces of rail between two centres of adjacent sleeper spans. Each
piece of rail consists of four elements in a track unit section.

The rails are simulated with Timoshenko beams that rest on discrete pad-sleeper-ballast
supports. Each element of the rails (Fig. 3) is a two-node element with four degrees of
freedom at each node. The nodal degrees of freedom of the element are described as a vector
form

fgeg ¼ ue
n;F
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where u is the vertical displacement, F is the rotational angle, e is the element number and n and
n þ 1 are the global node numbers at each side of the element. It is assumed that u and F are
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represented by the polynomial expressions of the form:

u ¼
X8

i

aiZe
i ; F ¼

X8

i

biZ
e
i ; ð3Þ

where aiðxÞ and biðxÞ are cubic polynomial shape functions:

a1 ¼ b2 ¼ ð2 	 3xþ x3Þ=4;

a3 ¼ b4 ¼ hð1	 xÞð1 	 x2Þ=8;

a5 ¼ b6 ¼ ð2 þ 3x	 x3Þ=4;

a7 ¼ b8 ¼ 	hð1þ xÞð1 	 x2Þ=8;

a2 ¼ a4 ¼ a6 ¼ a8 ¼ b1 ¼ b3 ¼ b5 ¼ b7 ¼ 0; ð4Þ

where h is the length of the beam element. By using the energy method, matrices of mass, stiffness
and damping and a force vector for the each beam element can be expressed as follows.

The stiffness matrix is given by

kij ¼
TGh
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kf aiaj dx; i; j ¼ 1; 2;y; 8; ð5Þ

where kij is the component of stiffness matrix, Ar is the cross-section area of the rail, E and G are
the elastic modulus and shear modulus, respectively, Ir is the rail second moment of area, T is the
Timoshenko shear coefficient of the rail and kf is the foundation stiffness of the beam.

The mass matrix is given by

mij ¼
rh

2

Z
ðAraiaj þ IrbibjÞ dx; i; j ¼ 1; 2;y; 8; ð6Þ

where mij is the component of the mass matrix and r is the density of the rail material.
The damping matrix is

cij ¼
h

2

Z 1

	1

craiaj dx; i; j ¼ 1; 2;y; 8; ð7Þ

where cij is the component of the damping matrix and cr is the foundation damping coefficient of
the beam.
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The force vector is

Fi ¼
h

2

Z 1

	1

pðx; tÞai dx; i ¼ 1; 2;y; 8; ð8Þ

where Fi is the force component of the force vector and p is the distributed force on rail.
The sleepers are simplified as Euler–Bernoulli beams. The sleeper is modelled as a beam with six

elements (7 nodes) in the cross-track direction. There are two d.o.f. (vertical displacement and
bending angle) at each node on the sleeper. It is defined that the sleeper can rotate as a rigid body
in the plane of longitudinal and vertical directions. Therefore another d.o.f. of a sleeper, a rotation
angle, is added at the two nodes on the sleeper just under the rails.

The rail pads are treated as distributed massless spring–dampers inserted between the rails and
sleepers. Ballast is also considered as a set of massless spring–damper elements distributed
between the sleepers and subgrade. The subgrade is assumed to form a rigid support. There are a
total of 56 d.o.f. in one unit of the track.

The number of units for the entire FE track model is determined by considering the distance
effect of the wheel/rail interaction. If, at a point far from the wheel/rail contact, the displacement
of the track is insignificant, then that point is the boundary of the track model. Normally, a
distance of eight sleepers beyond the two wheel/rail contact points under the leading and trailing
wheels is a good base for this model. In this paper the total length of the track is 20 sleepers.

The unit matrices of mass, stiffness and damping are banded matrices with size 56
 23, where
23 is the halfwidth of the matrix band. In order to solve the equations, global matrices of mass,
stiffness and damping have to be established. If a 20-sleeper track is considered, 20 unit matrices
should be installed into the global matrices. The size of the global matrices will be 968
 23.

When the vehicle moves along the track, the contact positions are approaching the boundary of
one end of the track. The effects of the vehicle forces can not be neglected at the approached
boundary because the distance between the leading wheel and the boundary gets shorter and
shorter. However, it is impossible for a model to have infinite track length. A cutting and merging
method developed by Dong [9] is adapted in this study. This is accomplished by cutting a unit at
the trailing end of the track and adding a new unit at the leading end of the track, after the vehicle
has travelled a distance of one unit, as shown in Fig. 4. In this way, only the effective part of the
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track is kept in the model and the vehicle is able to travel on the track indefinitely. High frequency
displacement fluctuations may be introduced in the cutting and merging process. These
disturbances can be satisfactorily minimized when viscous damping is imposed at both rail ends.

2.3. Wheel/rail contact model

The adaptive wheel/rail contact model illustrated in Fig. 5 is used in this paper. The wheel/rail
contact is represented by a set of uniformly distributed linear springs that have the same stiffness.
This model is equivalent to the Hertzian contact theory. Using Hertzian contact theory, the elastic
deformation of the wheel and rail can be calculated. The elastic deformation caused by real wheel/
rail contact is assumed to be the same as the deformation caused by compression of a group of
equidistantly distributed sub-springs under the same contact force. Since the contact force is
known and the wheel/rail deformation is evaluated for the static case, the stiffness of the sub-
springs can be obtained.

By solving the dynamic system, displacements of the wheel and rail can be obtained. An
overlapped area between an undeformed wheel and rail is formed due to the displacements of the
wheel and rail. It is assumed that the area is the total deformation of the wheel and rail, and also is
a compression distribution of the sub-springs. Then a contact force between wheel and rail can be
calculated by summing the forces on all sub-springs, which are the products of the compressed
heights and stiffness of the sub-springs.

2.4. Defects

This vehicle/track model can simulate many wheel/rail defects such as wheel flats, wheel
shelling, out-of-round wheels, rails with crushed head, fatigue damaged rails, rail joints, surface
roughness, corrugated wheels and rails, etc. In these cases, train speed and axle load can vary over
a wide range. Because four wheels and both sides of the track are considered, different wheel and
rail profiles can be applied to the solution.

In this paper, only one defect case, the wheel flat, is investigated. The wheel flat can be
represented as a circle with a chordal line, as shown in Fig. 6. The wheel profile can be
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mathematically expressed as

r ¼
R; jjjXjf ;

R
cosjf

cosj
; jjjojf ;

8<
: ð9Þ

where r is the distance from the wheel surface to the wheel centre, R is the wheel radius, j is the
angle co-ordinate, jf is half of the subtended angle of the flat and equal to sin	1ðL=2RÞ in which L
is the circumferential length of the flat.

3. Computer program

The framework of the dynamic model is summarized in Fig. 7. The first task is to calculate the
mass, stiffness and damping matrices for both the vehicle and the track after the individual
parameters are read into the program. For cases with defects on the wheels or the rails or on both,
the wheel and/or rail surface profiles should be entered in the program.

The time step of the program is chosen according to the speed. A reference time step (Dt0) is
10	5 s for a speed of 54 km/h. The higher the vehicle speed is, the shorter the step is. A linear
formula is used to select the time step:

Dt ¼ Dt0 � V=54: ð10Þ

The reason to use such a short time step is to capture the high frequency dynamic responses from
the vehicle/track system.

The wheels move along the rails step by step. In each step, the contact forces are calculated first
based on the vertical displacements of the wheels and rails and surface profiles, and then the two
dynamic systems of the vehicle and the track are solved separately. After that the calculation
moves forward to another step. When the requirement for wheel travel distance is reached, the
program stops.
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4. Results and discussions

This asymmetrical vehicle/track model can be used to simulate many dynamic situations
commonly seen in railway practice, such as steady state interaction, dynamic responses for wheel
flat, wheel shelling, out-of-round wheels, top of rail fatigue, rail joints, wheel/rail corrugation, etc.
Two cases, steady state interaction and a wheel flat on a leading wheel, are solved in this study to
show the how the model works and what the model can do. The parameters used for the vehicle
and track are given in Appendix A.

4.1. Steady state dynamic interaction

The so-called steady state interaction is a situation in which the rails are perfectly smooth, the
wheels have no defects, the vehicle structure is symmetric, and the track structure is uniform. The
study of steady state interaction provides information on the minimum dynamic force that would
be generated as a vehicle runs on a track. Fig. 8 shows the displacements and dynamic forces of
some components of the vehicle/track system in a steady state interaction when the vehicle travels
on the track at a speed of 160 km/h.
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The displacements of the wheel and the rail at the contact point are illustrated in Fig. 8. The
two curves have the same trend with small differences. The differences cause the dynamic contact
forces.

Fig. 8 also shows the displacement history of sleepers #1 and #5, the rail at the nodes supported
by the sleepers and the centres of the sleepers when the vehicle is moving. There are two peaks on
the curves because two wheelsets are taken into account. The leading wheel causes the first peak
on the left side of the curves, and the trailing wheel causes the second peak on the right side of the
curves. Fig. 8 shows that the deflections caused by the leading wheel are smaller than the
deflections caused by the trailing wheel.

The forces on the pads are also plotted in Fig. 8. The force magnitude is about one third of the
wheel/rail contact force in this case. The force history responds to the leading and trailing wheels
as they pass over the sleepers.

Fig. 9 illustrates several samples of dynamic contact force at the wheel-rail interface in a steady
state interaction at different speeds. In the majority of cases, the primary periodic wavelength in
the time history of the dynamic force was equal to the sleeper spacing (0.6m). This is obviously a
result of the effect of the sleeper spacing. It is speculated that the spacing effect results primarily
from the variation of overall track stiffness across each sleeper spacing. The wavelength, however,
was surprisingly reduced to half of the sleeper spacing at 160 km/h (44m/s). This interesting
phenomenon may be explained from the analysis of the dynamic motions of the sleeper in the
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vehicle–track interaction. The track parameters of the sleeper used in the present study are
basically the same as those used in a previous study [12], which reported that the rigid body
resonant modes of the sleeper in the track were about 73Hz. This frequency is almost exactly the
same as the sleeper passing frequency (=vehicle speed/sleeper spacing) corresponding to 160km/h.
Clearly, the rigid resonant mode of the sleeper in the track was probably excited at this speed and
caused the double waves in each sleeper spacing.

4.2. Dynamic interaction for one wheel flat

It is assumed that only one wheel flat exists on the left leading wheel. The surface geometry is
expressed by Eq. (9). The inputted irregularity function along with the system time history in
terms of wheel/rail contact forces, displacement of sleepers, rails and wheels, forces on pads and
ballast and rail acceleration are illustrated in Fig. 10. After the irregularity appears, the wheel is
unloaded and the contact force quickly drops to zero; the wheel moves down and the rail rises up;
the wheel loses contact with the rail for a short moment and then impacts on the rail. The impact
force is larger than the static load and depends on the train speed and the size of the flat. The
negative overlap of the wheel/rail displacements indicates that the wheel is separated from the rail
on the wheel centreline. At the same time as the wheel impacts on the rail, the sleepers and ballast
also suffer a high impact force.

Even though the defect is on the left leading wheel, the impact affects other wheels through the
wheel axles and bogie. Fig. 11 exhibits the characteristics of the effects. The impact on the left
leading wheel results in impact and vibration on the left trailing wheel and oscillation of the
wheels on the right side.
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The characteristic of the rail acceleration is unique in comparison to other variables, as shown
in Fig. 10. A very sharp acceleration peak in its time history occurs at the moment when the wheel
hits the rail. Because the rail mass is much smaller than wheel mass, the rail acceleration is very
sensitive to impact due to wheel/rail irregularities. This principle is used in commercial wheel
impact detection devices.

5. Conclusions

A finite element time-domain model for vehicle/track dynamic interaction is proposed in this
paper. The model can solve the comprehensive vehicle/track dynamic problem in the time domain.
All forces, displacements, velocities and accelerations of all simulated vehicle/track components
can be evaluated, and the dynamic responses to wheel/rail interaction can be determined with the
computer program.

The solution of the wheel flat case reveals that the wheel/rail impact on one rail significantly
affects the wheel/rail interaction on the other side of the track.
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Since forces and displacements of whole systems can be calculated with the computer model,
the model can be used to do further vibration and noise analysis for vehicle/track components.

Appendix A. Parameters for the example cases

Track
Rail RE 136
Timoshenko shear coefficient of the rail 0.34
Sleeper spacing 0.6069m
Length of the sleeper 2.36m
Sleeper mass 180 kg
Pad stiffness (per node) 200MN/m
Ballast stiffness (per sleeper) 40 MN/m
Pad damping (per node) 30 kN s/m
Ballast damping (per sleeper) 50 kN s/m

Vehicle
Wheelset mass 1300 kg
Wheelset moment of inertia 1000 kgm2

Bogie mass 500 kg
Bogie rotational moment 176 kgm2

Car body mass (half vehicle) 56,900 kg
Wheelset axle spacing 1.778m
Stiffness of the primary suspension 788MN/m
Stiffness of the secondary suspension 6.11MN/m
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Damping of the primary suspension 3.5 kN s/m
Damping of the secondary suspension 15.8 kN s/m
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